Tract-based morphometry for white matter group analysis
نویسندگان
چکیده
We introduce an automatic method that we call tract-based morphometry, or TBM, for measurement and analysis of diffusion MRI data along white matter fiber tracts. Using subject-specific tractography bundle segmentations, we generate an arc length parameterization of the bundle with point correspondences across all fibers and all subjects, allowing tract-based measurement and analysis. In this paper we present a quantitative comparison of fiber coordinate systems from the literature and we introduce an improved optimal match method that reduces spatial distortion and improves intra- and inter-subject variability of FA measurements. We propose a method for generating arc length correspondences across hemispheres, enabling a TBM study of interhemispheric diffusion asymmetries in the arcuate fasciculus (AF) and cingulum bundle (CB). The results of this study demonstrate that TBM can detect differences that may not be found by measuring means of scalar invariants in entire tracts, such as the mean diffusivity (MD) differences found in AF. We report TBM results of higher fractional anisotropy (FA) in the left hemisphere in AF (caused primarily by lower lambda(3), the smallest eigenvalue of the diffusion tensor, in the left AF), and higher left hemisphere FA in CB (related to higher lambda(1), the largest eigenvalue of the diffusion tensor, in the left CB). By mapping the significance levels onto the tractography trajectories for each structure, we demonstrate the anatomical locations of the interhemispheric differences. The TBM approach brings analysis of DTI data into the clinically and neuroanatomically relevant framework of the tract anatomy.
منابع مشابه
Tract-Based Morphometry
Multisubject statistical analyses of diffusion tensor images in regions of specific white matter tracts have commonly measured only the mean value of a scalar invariant such as the fractional anisotropy (FA), ignoring the spatial variation of FA along the length of fiber tracts. We propose to instead perform tract-based morphometry (TBM), or the statistical analysis of diffusion MRI data in an ...
متن کاملP 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images
Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...
متن کاملAge-Related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural MRI and Diffusion Tensor Imaging
The aim is to investigate the relationship between microstructural white matter (WM) diffusivity indices and macrostructural WM volume (WMV) among healthy individuals (20-85 years). Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract...
متن کاملWhite matter alterations in antipsychotic- and mood stabilizer-naïve individuals with bipolar II/NOS disorder☆
Structural magnetic resonance imaging (MRI) studies using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) have been inconsistent in demonstrating impairments in gray matter (GM) and white matter (WM) structures in bipolar disorder (BD). This may be a consequence of significant confounding effects of medication, illness history and selection of controls in existing studie...
متن کاملRegistration and Analysis of White Matter Group Differences with a Multi-fiber Model
Diffusion magnetic resonance imaging has been used extensively to probe the white matter in vivo. Typically, the raw diffusion images are used to reconstruct a diffusion tensor image (DTI). The incapacity of DTI to represent crossing fibers leaded to the development of more sophisticated diffusion models. Among them, multi-fiber models represent each fiber bundle independently, allowing the dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 45 3 شماره
صفحات -
تاریخ انتشار 2009